Multi-view object pose distribution tracking for grasping on mobile robots

Lakshadeep Naik

Supervisor: Norbert Krüger

Co-supervisors/ Support group: Aljaz Kramberger, Thorbjørn M. Iversen, Jakob Wilm

Mobile manipulation

sdu.dk

[1] Universal Robots (UR)[2] Mobile Industrial Robots (MiR)[3] Enabled Robotics (ER)

SDU 🎓

Non-industrial / Welfare use-cases

Image source: [1]

Image source: [2]

[1] Enabled Robotics (ER)[2] SDU

Related work at SDU

Optimizing pose uncertainties for industrial applications

Image source: [1]

Img source: [2]

[1] Iversen, Thorbjørn Mosekjær. Automated configuration of vision sensor systems for industrial robotics. Diss. Syddansk Universitet, 2019.

[2] Hagelskjær, F., Kramberger, A., Wolniakowski, A., Savarimuthu, T. R., & Krüger, N. (2019, November). Combined Optimization of Gripper Finger Design and Pose Estimation Processes for Advanced Industrial Assembly. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2022-2029). IEEE.

Improving time efficiency

Reducing failures

- Estimation of the underlying uncertainty in object pose estimate
 - determine likelihood of success of the grasping task
 - take an action to reduce uncertainty in pose estimate before grasping

[1] Iversen, Thorbjørn Mosekjær. Automated configuration of vision sensor systems for industrial robotics. Diss. Syddansk Universitet, 2019.

[2] Manhardt, Fabian, et al. "Explaining the ambiguity of object detection and 6d pose from visual data." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.

Problem formulation

The Maersk Mc-Kinney Moller Institute

2

Objectives

To enable object pose distribution tracking from distance for pregrasp planning

To reduce the object pose uncertainties below that can be compensated by the gripper when robot is close enough to grasp the object

SDU 🎓

Problem formulation

Related work

Object pose distribution (uncertainty) estimation

[1] Deng, Xinke, et al. "Poserbpf: A rao-blackwellized particle filter for 6-d object pose tracking." *IEEE Transactions on Robotics* 37.5 (2021): 1328-1342.
 [2] Okorn, Brian, et al. "Learning orientation distributions for object pose estimation." 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020.
 [3] Shi, Guanya, et al. "Fast uncertainty quantification for deep object pose estimation." 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021.

Multi-view object pose distribution tracking

Related work

Multi-view pose distribution (uncertainty)

- Models posterior distribution as a uni-modal Gaussian distribution
- No temporal integration (tracking)

Image source: [1]

[1] Erkent, Özgür, Dadhichi Shukla, and Justus Piater. "Integration of probabilistic pose estimates from multiple views." *European Conference on Computer Vision*. Springer, Cham, 2016.

Our contribution

- Based on Rao-Blackwellized particle filter with denoising auto-encoder for verifying observations [1]
- Extends [1] to fuse information from external cameras
- Both translation and orientation distributions are modeled as a multi-modal distributions

Naik, L., Iversen, T. M., Kramberger, A., Wilm, J., & Krüger, N. (Accepted/In press). Multi-view object pose distribution tracking for pregrasp planning on mobile robots. In 2022 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1554-1561) IEEE.

[1] Deng, Xinke, et al. "Poserbpf: A rao-blackwellized particle filter for 6-d object pose tracking." *IEEE Transactions on Robotics* 37.5 (2021): 1328-1342.

FacilityCobot

SDU

• A robot assistant for the cafeteria staff

lityCobot

- Mobile manipulator (Enabled Robotics) for cleaning and clearing cafeteria tables
- External stationary cameras (UbiqiSense Facility Sensors) for providing dynamic overview of the scene to the robot

The Maersk Mc-Kinney Moller Institute

ReThiCare

Plant Watering Robot (PWR)

- Re-thinking Care Robots
- Nautically designed plant watering robot to entertain people suffering from dementia at care homes and also carry out routine tasks such as plant watering

Particle filter

Posterior distribution model Algorithm Particle_filter(X_{t-1}, u_t, z_t): 1: $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$ 2: State transition using motion model for m = 1 to M do 3: sample $x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})$ 4: Observation likelihood $w_t^{[m]} = p(z_t \mid x_t^{[m]})$ 5: $ar{\mathcal{X}}_t = ar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]}
angle$ 6: 7: endfor 8: for m = 1 to M do **Re-sampling** draw *i* with probability $\propto w_t^{[i]}$ 9: add $x_t^{[i]}$ to \mathcal{X}_t 10: 11: endfor 12: return \mathcal{X}_t

6D pose estimation $X_t = (x, y, z, \alpha, \beta, \gamma)$

Posterior distribution $P(X_t | Z_{1:t}) = X_t^1, X_t^2, \dots, X_t^M$

Source: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard and Dieter Fox

Posterior distribution model

Mixture of gaussian distribution

$$P(T_i) = \sum_{i=1}^{K} \phi_i \,\mathcal{N}(\mu_i, \sigma_i)$$

Histogram distribution by discretizing orientation space

$$P(R_t) = \frac{p_{k,t}}{|R_{k,t}|}$$

sdu.dk

K = no. of cameras

May 2022

State transition using motion model

Propagating particles originating from external cameras

Propagating particles originating from robot camera

 $\mathcal{C}\mathcal{e}_t$ - external camera frame

 $C r_t$ - robot camera frame frame

Observation likelihood

Image source: [1]

SDU 🎓

Observation likelihood

Single-view

Multi-view

 $P({}^{1}Z_{t}, {}^{2}Z_{t}, {}^{r}Z_{t} | {}^{r}T_{t}, {}^{r}R_{t}) \prec P({}^{r}R_{t} | {}^{r}T_{t}, {}^{1}Z_{t}, {}^{2}Z_{t}, {}^{r}Z_{t})P({}^{1}Z_{t}, {}^{2}Z_{t}, {}^{r}Z_{t} | {}^{r}T_{t})$ = -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.90 -0.25 0.00 0.25 0.90 9.75 1.00 Orientation distributions $P(R_c^j | {}^{r}T_t, {}^{1}Z_t)) \underset{\times}{\times} P(R_c^j | {}^{r}T_t, {}^{2}Z_t)) \underset{\times}{\times} P(R_c^j | {}^{r}T_t, {}^{r}Z_t))$

sdu.dk

Observation likelihood

Single-view

Multi-view

 $P({}^{1}Z_{t}, {}^{2}Z_{t}, {}^{r}Z_{t} | {}^{r}T_{t}, {}^{r}R_{t}) \prec P({}^{r}R_{t} | {}^{r}T_{t}, {}^{1}Z_{t}, {}^{2}Z_{t}, {}^{r}Z_{t})P({}^{1}Z_{t}, {}^{2}Z_{t}, {}^{r}Z_{t} | {}^{r}T_{t})$

Re-sampling

- Weight of each (translation) particle is computed using marginal probability of histogram distribution
- Particles are re-sampled to increase the number of particles with good weights using low-variance resampling

Source: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard and Dieter Fox

sdu.dk

Proposed approach

Translation expectation

 $E(T_t) = \begin{cases} \sum_{1}^{M} w_{m,t} T_{m,t} &* \text{ if } P(T_t) \text{ is unimodal} \\ max \left(P(T_t) \right) & \text{ otherwise} \end{cases}$

Multi-modal

 $\rightarrow P(T_t)$ - translation particles

 \rightarrow Modality of the distribution is determined using Henze-Zirkler multivariate normality test

#sdudk

Orientation expectation

Initial estimate

 $R_{i,j,k,t} = \sum_{m=1}^{M} \frac{p_{m,i,j,k,t}}{|R_{m,i,j,k,t}|}$

where:

i: 0 to 72 (bank) j: 0 to 72 (azimuth) k: 0 to 37 (elevation) M: no of particles

$$R_{i,j,k,t}^{l} = \arg\max_{(i,j,k) \subset (i,j,k), |(i,j,k)| = L} \sum_{(i,j,k) \subset (i,j,k)} R_{i,j,k,t}$$

$$E(R_t) = \begin{cases} \frac{\sum_{1}^{L} R_{i,j,k,t}^l * eulerToQuaternion(i, j, k)}{l} & \text{if } R_{i,j,k,t}^l \text{is unimodal} \\ max(R_{i,j,k,t}^l) & \text{otherwise} \end{cases}$$

Temporal fusion

$$E(\bar{R}) = {}^{r_t}_{r_{t-1}} T \circ R_{t-1}$$

$$R^{p}_{i,j,k,t} = arg_{(i) \subset (l)} abs(R^{l}_{i,j,k,t} - E(\bar{R})) < r_{thresh}$$

 r_{thresh} : threshold for difference between orientations

$$p = \frac{|R_{i,j,k,t}^p|}{|R_{i,j,k,t}^l|}$$

$$(R_{t}) = \begin{cases} a_{t-1} E(\bar{R}) + a_{t} \frac{\sum_{l=1}^{L} R_{i,j,k,t}^{l} * eulerToQuaternion(i, j, k)}{l} & \text{if } p > p_{thres} \text{ and } R_{i,j,k,t}^{l} \text{ is unimodal} \\ \frac{\sum_{l=1}^{L} R_{i,j,k,t}^{l} * eulerToQuaternion(i, j, k)}{l} & \text{if } p < p_{thres} \text{ and } R_{i,j,k,t}^{l} \text{ is unimodal} \\ a_{t-1} E(\bar{R}) + a_{t} \frac{\sum_{l=1}^{L} R_{i,j,k,t}^{p} * eulerToQuaternion(i, j, k)}{l} & \text{if } p > p_{thres} \text{ and } R_{i,j,k,t}^{l} \text{ is multimodal} \\ max(R_{i,j,k,t}^{l}) & \text{if } p > p_{thres} \text{ and } R_{i,j,k,t}^{l} \text{ is multimodal} \\ E(\bar{R}) & \text{otherwise} \end{cases}$$

where:

E

 a_{t-1} : scaling factor for rotation estimate at time t-1

 a_t : scaling factor for rotation estimate at time t

 $a_{t-1} + a_t = 1$

 a_{thres} : difference between the angles to determine to if orientation estimate at time t should be incorporated in the tracked estimate

 p_{thres} : threshold for determining percentage of orientations within the orientation expectation at previous time step

Experimental Evaluation

- Simulated dataset [1] containing 8 different YCB objects created using photo-realistic renderer
- Each sequence contains view from robot and external cameras with robot camera simulating robots base and arm motion

[1] L. Naik, "Multi-view rendered YCB dataset for mobile manipulation," Feb. 2022. [Online]. Available: https://doi.org/ 10.5281/zenodo.

SDU 🎓

Qualitative results

Example 1: Robot moving closer towards the object

Translation uncertainty

Orientation uncertainty

Original robot view

Multi-view result

Single-view result

SDU 🎓

0.25

0,20

E 0.15

0.10

0.05

0.00

20

40

Frame no

60

80

Single-view

Results

Real world evaluation

UR robot with marker setup

Example recording

SDU 🎓

External camera simulation

External camera simulation

Real world evaluation

Quality of ground truths

Bad estimates

The Maersk Mc-Kinney Moller Institute

SDU 🎓

The Maersk Mc-Kinney Moller Institute

SDU 🎓

Conclusions

- The proposed approach generally results in faster convergence of translation and orientation errors and uncertainties compared to the single view baseline
- However, there are instances when single view approach performs better compared to multi-view as robot camera has much better observation compared to external camera views

Ongoing and future work

- Determining when to use robot and external cameras
- Maintaining multiple orientation expectations at each time step
- Planning robot camera views to improve estimates

SDU 🎓

Thank you

Questions?

sdu.dk