

Multi-view object pose distribution tracking for pre-grasp planning on mobile robots

Lakshadeep Naik, Thorbjørn Mosekjær Iversen, Aljaz Kramberger, Jakob Wilm, Norbert Kruger

SDU Robotics, Maersk Mc-Kinney Moller Institute University of Southern Denmark

Motivation

Enabling robust and efficient manipulation on mobile robots

Mobile Manipulation - sequential approach

- · Goto near the object table
- Observe the object and estimate its 6D pose
- Plan grasp
- Execute grasp

Problem formulation

- Estimating object pose distribution (uncertainty) to ensure success of grasping task
- Estimating full object pose distribution while robot is still navigating towards the object to enable pre-grasp planning

Proposed approach

Multi-view object pose distribution tracking

Proposed approach

- Rao-Blackwellized particle filter with de-noising auto-encoder for verifying observations [1]
- Extended to fuse information from external cameras
- Both translation and orientation distributions are modeled as a multi-modal distributions

[1] Deng, Xinke, et al. "Poserbpf: A rao-blackwellized particle filter for 6-d object pose tracking." IEEE Transactions on Robotics 37.5 (2021): 1328-1342.

Proposed architecture

Experimental evaluation

Evaluation dataset

- Simulated dataset [1] containing 8 different YCB objects created using photo-realistic renderer
- Each sequence contains view from robot and external cameras with robot camera simulating robots base and arm motion

[1] L. Naik, "Multi-view rendered YCB dataset for mobile manipulation," Feb. 2022. [Online]. Available: https://doi.org/10.5281/zenodo.

Results - simple scenario

60

50

v 40

ror in degre 8

E 20

10

20

40

Frame no

60

80

Robot moving closer to object - asymmetric object, no occlusions

Orientation error

Orientation error

Translation uncertainty

Frame no

Orientation uncertainty

Original robot view

Multi-view result

Single-view result

Results - complex scenario

Robot moving closer and around the occluded object with 1 axis of symmetry

Original robot view

CRA 2022

Orientation error

SDU

Translation uncertainty

Orientation uncertainty

-1

Multi-view result

Single-view result

Quantitative results

	Translation error (in m)		Orientation error (in deg)		Translation std. dev (in m)		Log likelihood	
	Multi	Single	Multi	Single	Multi	Single	Multi	Single
Cracker box	0.0121	0.0172	6.33	18.60	0.0781	0.0583	-6.91	-11.09
Mustard bottle	0.0251	0.0621	10.68	93.48	0.1191	0.0601	-7.15	-10.97
Mug	0.0495	0.0778	15.69	130.28	0.1370	0.1151	-13.70	-17.22
Sugar box	0.0411	0.0954	9.50	32.47	0.2065	0.0785	-11.25	-13.53
Banana	0.0800	0.1937	15.85	97.95	0.1640	0.1495	-14.92	-17.63
Master chef can	0.0066	0.0065	6.23	87.06	0.0737	0.0318	-8.35	-11.35
Bleach cleanser	0.0955	0.2774	57.44	152.70	0.2375	0.2991	-13.65	-16.89
Power drill	0.0561	0.3125	17.36	23.97	0.0837	0.0444	-11.19	-12.74
Mean	0.0457	0.1303	17.38	75.56	0.1374	0.1046	-10.89	-13.92

Conclusions and future work

- The proposed approach can be an enabler for pre-grasp planning tasks such as
 - Selecting the order in which robot should grasp the objects
 - Optimal base position to grasp all the objects

- Pre-grasp planning to grasp planning
 - Using uncertainties to predict grasp failures
 - Planning actions to reduce uncertainties

University of Southern Denmark

Funded by Innovation fund Denmark

Funded by Volkswagen Stiftung

