Semantic Mapping extension for OpenStreetMap applied to indoor robot navigation

Lakshadeep Naik, Sebastian Blumenthal, Nico Huebel, Herman Bruyninckx, Erwin Prassler

Introduction

- Indoor robots mostly rely on the spatial representation of the environment
- They also need semantic information to give meaning to spatial information
- This work presents a hierarchical & composable graph model for creating indoor semantic maps, which extends OpenStreetMap

Semantic Maps

- They contain semantic information of the environment apart from spatial information
- Most of the existing semantic mapping approaches add semantic information on top of a
- Topological graph is created based on the detected semantic features and environment geometry (bottom-up approach)

Deficits

- They lack modular and abstract design, difficult to scale & update only part of the map They have minimal querying capabilities for querying semantic information Sensors & algorithms used for mapping introduce uncertainty

- A robot has to deal with uncertainty every time it uses this map

OpenStreetMap (OSM)

- It is an open-source, collaborative mapping project
- Its model conforms to graph model and provides lots of semantic tags
- It supports modelling: vector geometry, topological
- graphs, semantic information, hierarchy It has been successfully used for outdoor robotics applications
- It provides tools supporting development (mapping) & usage (querying) of the models

Deficits

- Officially supports only outdoor environments
- Uses geographical coordinate systems
- Made for human navigation, robots require lot more

Indoor OpenStreetMap for Berlin Central Station (Source: OpenStationMana)

Proposed semantic mapping approach

- OSM is based on the concept of Volunteered Geographic Information (VGI) i.e. its people who create, edit and use the maps
- This work presents a similar approach to create a map for robots, i.e. humans add additional information to the OSM in the robotics context so that humans & robots can use
- that same map (top-down approach)
 It provides a composable & hierarchical graph model for creating semantic maps for indoor environment using OSM

Modelling OSM in robotics context

Domain specific modelling - identifying additional information required for indoor robot navigation

Modelling OSM in robotics context (continued)

Logical modelling - giving abstract structure to the data models

Technology specific modelling - representing data models using OSM data-structures

Evaluation

Efforts required for creating OSM in robotics context

Incorporating semantics in indoor navigation

	Indoor OSM madel	Proposed model
No of nedas	35	643
No of ways	9	221
No of relations	0	280

Results & conclusions

- OSM can be successfully used to create semantic maps for robots
- Maps can be created using existing OSM mapping tools such as JOSM
- Mapped data can be queried using existing OSM querying tools such as Overpass and Osmium
- Robots require much more information then humans, this comes at the cost of increased modelling efforts
- Hence there is a need to semi-automate/ automate the process to scale it for larger

Acknowledgement

This work was supported by the European Union's Horizon 2020 projects ROPOD (grant agreement No 731848) and RobMoSys (grant agreement No 732410).

Contact

Hochschule Bonn Rhein Sieg lakshadeep.naik@h-brs.de

